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RADIATION AND COUPLING BETWEEN TWO COLLINEAR
OPEN ENDED WAVEGUIDES
By Robert J. Mailloux
Electronics Research Center

SUMMARY

This report describes an experimental and theoretical
study of collinear coupled waveguides radiating through a
common perfectly conducting ground plane. The problem is
formulated as a set of simultaneous integral equations and
solved approximately by expanding the aperture field in a
Fourier series.

The special case of a single isolated waveguide is treated
first, and the results are compared with experiment as well as
with the approximate results of Lewin. Attention is given to
the edge singularities.

The more general case of two collinear coupled waveguide
slots is solved by the same numerical method using the
symmetrical properties of the geometry. Phase and amplitude
of the mutual coupling are evaluated and compared with
experiment. Agreement is excellent.

Considerable attention is given to comparing more simple
approximations with this result, and on several occasions it
is pointed out how these can be used and what error the addi-

tional approximations introduce.



I. INTRODUCTION

The radiating waveguide is a fundamental electromagnetic
structure, and one about which a great deal is known. With
the realization of large scale microwave arrays, the subject
of waveguide radiation and mutual coupling has aroused
renewed interest. Since most of the recent theoretical
efforts have been concerned with infinite arraysl'z'3 and
since these results are not readily applicable to a considera-
tion of small arrays, or edge effects in large arrays, there
is a need to study this problem from the point of view of
individually coupled elements. This approach has been found
most useful in the case of dipole arrays because the results
can be readily compared with experiment and because the
analysis may be extended gquite naturally to consider the
edge behavior of small or large arrays and can be used for
infinite arrays as well.

The present work is concerned with the study of two open
ended waveguides which radiate through a common perfectly
conducting ground plane. The waveguides are arranged
collinearly as shown in Figure 1, and the structure has been
analyzed by expanding the solution in a truncated set of wave-
guide modes as an approximation to the integral equation
solution. This method was chosen in preference to the compu-

tationally simpler variational solutions in order that bounds
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on the accuracy of the theory could be established by

varying the number of terms used in the solution. The theoreti-
cal results have been correlated with experimental data in
order to justify the basic assumptions of the analysis.

Though many authors have considered the problems of wave-
guide radiation and mutual coupling, there are still a great
many questions which have yet to be answered concerning these
subjects. The following discussion is intended to point out
some of the gaps in present theoretical knowledge.

Much of the earlier work in this area was concerned with
computing the field patterns of single waveguides with assumed
aperture distributions. The next subject which attracted
general interest, the input admittance of waveguide radiators,
has traditionally been studied4’5 using variational formulas
with the lowest order mode as an aperture distribution.

These formulations have been quite successful and give
reasonably good approximations to both the conductance and
susceptance. As mentioned earlier, they cannot easily be

made to yield increasingly more accurate solutions. Other
stationary formulations®s7:8:9 have been studied for cases
involving waveguides radiating into complex media. These
formulations are based upon the use of Fourier integral
techniques and use the dominant mode field as the aperture field
approximation.

Galejs10 was apparently the first to mention that the

electric field distribution in the waveguide E-plane was not



uniform. He correctly observed that the electric field
normal to the waveguide edges should have a singularity of the
same order as the static field singularity (r"1/3) at a 90°
edge. His solution, which was formulated by considering the
junction between two waveguides as the size of one was made
to approach infinity, assumed a trial field which exhibited
this singularity. He found differences in admittance of
about 5% when comparing this field approximation with the
uniform field approximation.

In contrast to the single wavegquide radiation problem,
relatively little work has been done to describe the coupling
of two waveguides. It appears that the first study of this

11 who assumed the coupled

sort was performed by G. W. Wheeler
radiators were in the far field of one another. By comparing
theory and experiment, Wheeler was able to show that a single
mode solution was gquite adequate for the waveguides which he
considered when coupled under this far field condition. 1In
1956 Levisl? derived general egquations for a variational
formulation to obtain the coupling between a number of
generally cylindrical waveguides radiating through a common
ground plane. He applied the method to a set of coupled
annular slots. Galejsl3 applied a stationary formulation due
to Richmondl4 to solve the problem of two parallel slots in

a ground plane, with both slots backed by waveguides. He

also considered the limit in which the slots were the same

size as the waveguides. His method yielded usable and



convenient formulas; it includes the implicit assumption
that the tangential magnetic field at the coupled waveguide
aperture is the same as the magnetic field which would be
present on the ground plane if the coupled aperture were not
present. In this manner Galejs avoided the problem of
solving an integral equation.

The most recent work in this area is described in a
report by Lyon15 et.al., and concerns the power coupling
between various radiating structures including two open ended
waveguides in a common ground plane, with arbitrary orienta-
tion and spacing. This experimental and theoretical study
resulted in much useful data and some very convenient approxi-
mate formulas were based upon a single mode approximation to
the coupling and also included the assumption, equivalent to
that implicit in the work of Galejs, that the waveguide-backed
ground plane slot has a total magnetic field equal to the
incident magnetic field. This assumption again eliminated the
need to solve an integral equation to determine the coupling.

The recent work on infinite arrays has shown an increased
awareness of the importance of higher order modes in scanned
array situations. Galindo and wul’2 have studied a limited
but important class of infinite arrays for which the boundary
value problems could be rigorously solved in terms of scalar
functions. Farrell and Kuhn3 have used two sets of LSE modes
to show the existence of a deep null in the array power

pattern of a triangular grid array as the array was scanned



only a few degress off broadside in the H-plane. This null
had been detected experimentally at an earlier date, but was
not revealed by theoretical results based upon a single mode
approximation. The authors also mention an unpublished

study in which the excitation of cross polarized modes is
studied as the array is scanned in the E-plane. This appears
to be the first mention of this phenomenon.

There are several other mathematical techniques which
have been found useful for related problems but do not seem
to have been used for rectangular waveguides. The geometrical
theory of diffraction has been applied to study the radiation

of hornsls'19 18

and the mutual coupling of parallel plate
waveguides. The Weiner-Hopf procedure19 has been used to
study radiation of circular waveguides.

This brief survey emphasizes the fact that there are
many areas which should be studied further in order to
achieve a better understanding of this basic problem. The
present work appears to be the first example of a mutual
coupling study (excluding the two infinite array studies)
in which an attempt has been made to solve the integral
equations which govern the coupling of two waveguides. It
also appears to be the first example in which more than a
single mode is used to describe the coupling, and in addition
it presents the only experimental data currently available

showing both the amplitude and phase of the signal coupled

between two collinear open ended waveguides. Though this



study is intended as an aid in evaluating simpler and more
approximate analyses, it cannot be used to estimate the cross
polarized field components excited at the array face. These
components are not large for the collinear coupled slot case
discussed in this report and the analysis presented here has
been found to be an excellent approximation for all cases

tested experimentally.

II. FORMULATION OF THE BASIC PROBLEM
The basic geometry for this study is shown in Figure 1.
Two rectangular open-ended waveguides are mounted flush with
an infinite, perfectly-conducting ground plane. The free
space field in the half space bounded by the perfectly-
conducting plane (with apertures) can be written in the conven-

tional way in terms of the tangential aperture field as:

(for z > 0)
B(X¥) =3j2wwe T S I° (F,F') - (z x E)A S!
p=1,2 Sp - P
(1)
E(r) = 2 L / vG(r,r') x (z x E)d S'
p=1,2 Sp p
O/r 1 1 -
where TI“(r,r') = (U + ;{ vv)G (r,xr')
o
—_ e'jko|;‘;'|
and G(r,xr') = —
4nir-r'|
and lr-r'|] = J/(x-x)2 + (y-y')2 + z2



An exp(+jwt) time dependence is assumed and has been
suppressed. Vectors are denoted by a bar above the expression
and dyadics by a bar below. U is the unity dyadic and 1° is
the conventional free space dyadic Green's function. An
expression which is entirely equivalent to (1), but which
helps to explain the major approximation of the analysis to
follow, is obtained by defining the magnetic hertzian poten-
tial

e~ Iko|T-T"|

— —— .! ~ -
(2) Tm(r) = h) S (z x E) - d s!
m 21w p=1,2 Sp l'r_rll p

The corresponding fields are written

(3) B(r)

— ;2 -
v (V . Trm) + ko TTm

E(f) =-j w V x Tme

The above equations define the fields in free space bounded
by the conducting plane with apertures.

The field in each of the rectangular waveguides may be
written in a number of ways, but for the purposes of this
development it is convenient to expand the field in terms of
the magnetic hertzian potential as done for the free space
region. This is done by defining two scalar hertzian poten-

tials Tmx and TTmy Such that

(4) Tm = X Tpy Y Ty



Expressing the fields in this form is convenient because
it leads to a very simple and symmetrical form for the
integral equations, and also because it emphasizes the formal
similarities between this problem and several well-known
aperture diffraction problems(20’21'22'23). This expansion
is clearly valid for the exterior half space, and one might
expect intuitively that it would also be valid within each of
the waveguides, where it is equivalent to two sets of LSE
modes. These sets are not sufficiently complete to expand
the solution of an obstacle in the waveguide, but it is
proven in the appendix that they are adeguate to expand the
waveguide fields when the matching takes place at a plane
perpendicular to the waveguide axis. If the waveguide aper-
ture field is used in equation (2), it is only necessary to
equate the tangential magnetic fields on both sides of each
aperture in order to obtain integro-differential equations for
the coupled fields. In order to distinguish between the free
space fields and the waveguide fields the notation n%x' néy
will be used to designate the free space fields, while the
un-primed potentials will be used (later with subscripts) to
designate the fields in each waveguide. With these definitions,
the equations that express the continuity of the magnetic
fields in the apertures can be put into a form similar to that

used in the diffraction problems mentioned earlier. At each

aperture

10



2 t - =
32 32 ' — =
(5) (_3;_2_ + g?. + ko) (an nmy) 0
(6) 2 (m - ) = 2 (a' - ).
IX my my 2y mx mx

These equations have been solved rigorously in only a very
small number of cases, most of which are mentioned by Bouwkamégoh
The radiating waveguide is not among these. All of the
published results describe some approximate solution to the
above set of integro-differential equations. The analysis
which follows is also based upon a simplification of these
equations, to the extent that a single hertzian potential
function will be used to approximate the input admittance of a
single radiating waveguide and the coupling parameters of two
collinear radiating waveguides. This assumption is not new;
it is implicit in the work of Lewin(4) and Edelberg and

(24) and it is made explicit by Kieburtz and Ishimaru(23).

Oliner
The study presented here differs from others studies making
the same basic assumption in that no other major assumptions
are made. Instead, the reduced integro-differential equations
are solved by expanding the solution in a truncated infinite
series of a restricted set of modes, and then inverting the
matrix equation which results. The convergence of this tech-
nigque has been studied quite carefully and the truncation
errors are estimated whenever the data is quoted. By these

11



means, this theoretical study results in a very accurate
solution of the approximate model used. Attention is then
focused upon the comparison of this model with the experimen-
tal results to verify the validity of the model at hand.

The assumption that the single hertzian potential function
T mx suffices to expand the field ultimately requires that there

be no component of electric field in the x direction. Equations

(4) and (6) reduce to the following:

7 32 2 ' -
(7) (3;7 + ko) ("mx = "mx’ = O
(8) L (g - m_ ) =0

ay mx mx

At each aperture a solution of these equations is

A .
(9) LIV + A cos kox + B sin kox

(4)

This integral equation was first presented by Lewin
without mention of its approximate nature. The approximation
can be understood by noting that the factors A and B are
constants and not functions of the spacial parameter y.

(21)

Copson has pointed out that the constants of integration
must be determined so that the fields tangential to an edge
vanish at the edge. This is necessary to assure that all
fields are square integrable in a three dimensional domain
around the edge. The constants of integration for this

problem must therefore be determined so that the tangential

slectric field E, vanish at the edges x = +3/,. This condition

12



is the Babinet equivalent of that ordinarily encountered in

(25) which states that the current must vanish

dipole theory
at both ends of the dipole. However, though this condition
is satisfied by a constant for the infinitely thin dipole,
the two constants available in this solution are only capable
of assuring that this condition is satisfied at one point at
each edge. Therefore it is clear that the solution used in
this analysis is rigorous for slots whose width "b" equals
zero, but that it is only approximate for the present case
with finite slot width. The edge condition is not violated
in this study however, because the solution is expanded in

terms of a finite number of waveguide modes, each of which

satisfies the stated condition at x = ia/z.

III. SOLUTION FOR THE SINGLE RADIATING WAVEGUIDE
Subject to this approximation, the electromagnetic field

is written below in component form.

aznmx )
2
E = T mx 5 = 9 Thx
y Y y ax3y
o 32m
. mx =
E, = +Ju oy Bz ax3z

The fields in each waveguide are obtained by writing the
total potential function in terms of an incident mode field
plus an infinite number of reflected waves. The incident

component of the hertzian potential is normalized to unity.

13



x+a/2

Y z =Y 4
- 10 10 ;
(11) Tmx = (e re ) sin = a )
© x+2 b z
+ 3 ' App sin mn( /2) cos nn(zi—éz) ern
= a b

m=1l n=0

(12) where Yon = +/T'(E?Y§“; (%};é i—-ig_

(a . for (m,n) # (1,0)

ﬁ‘—jﬁlo for (m,n) = (1,0)

The prime symbol above the summation is used to indicate the
omission of the (m,n) = (1,0) term from this double summation.

The y component of electric field is given by (10) and (12)

and given below at z = 0
am ' x+3/
EY | = -juw amX | = —jw)y (1+T) sin = { a 2)
z=0 2 2z=0 10
(13)
! X x+2/ Y+b/2
+ I I Apn Ymp Sin mw ( ) cos nw( 5 )
m=1l n=0

This expression is no longer a convergent fourier series
because the electric field Ey perpendicular to the top wall

-1/3 singularity typical of a

of the waveguide exhibits the o
90° edge, where p is the distance from the edge. The

expression (11), however, is convergent everywhere in and out-
side of the aperture, and this property is required to assure

the validity of this solution. Singularities of this same

order are exhibited by E, at y = ib/z and by B, at x =t?/2.

14



Imn (x,y) =

The basic equation (9) is re-written below using the

given hertzian potential form inside of the waveguide.

(14)
a/2 b/2 e~ ikoT

J S B, (x',y') ——— dx' dy' = A cos k.Xx + B sin k.x

21w Y T o o

-a/2 -b/2

b/

x+2 o "o +a +2/ 2
+ (1-T) sin n{( /2) + L L App sin mn(x /2) cos nn(y 5 )

a m=1l n=o a

The solution proceeds by using the electric field from
(13) in the left side of (14), and setting B = 0 because of
the even symmetry. After defining the integrals:

(15) ,
- b
1 a/2 b/2 & IKgI, x'+3/ y'+ /2
27 S s e 2L sin mn(——;——z) cos nn (T )dx' dy'
" -a/2 -bs2 il

where r;,= /QX—x'ié + (y—QTTZ

one obtains the reduced form of equation (9) applicable to the

single radiating waveguide.

L]
(16)

_ . x+3/2

= A cos kgx + (1-T) sin n( 3 )
b

a
+ by i A sin mn(x+ /2) cos nn(Xi—iz)

m=1,3 n=0,2 ™0 a b

The set of modes AL is truncated at finite values of M

and N (MT,NT), and the constant A is treated as an unknown.

15



This determines a matrix equation when the equation is satis-
fied at a number of points within the aperture. The number

of points chosen is one greater than the number of modes

used in the solution. Treating the constant in this manner

is equivalent to a procedure which is commonly used in antenna
theory(zs), namely that of defining a difference potential and
assuring that it is zero at some point on the antenna. This
method 1s applicable when the chosen distribution functions

of current (or in this case electric field) are such that the

fields automatically satisfy the edge condition. One row of the

matrix equation is shown below.

a
. /
[-vio I,, (x,y) + sin n(ﬁig_Z)] '-A cos kox
(17) - ot 5! [Ymn Imn(x,y) + sin mn(——g—g) cos nﬂ(x—g—*)]Am

m=1,3 n=0,2

as2
. X+
= Y19 Iyo (X,¥) + sin v(=—)

This equation was repeated at points on a rectangular

lattice within the aperture.

Iv. SOLUTION FOR TWO COUPLED COLLINEAR ANTLNNAS
When two collinear slots couple, the coupled integral
equations can be reduced to two uncoupled integral equations
by virtue of the geometrical symmetry. The basic integral

equations are written below.

16
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At Aperture #1

-+ a/2 a/2 -jk_r
—1 7 1B, (x],y") e~ 2 1 ax! dy'
2Tw ~a/2 -p/2 L Ty
(18)
. a/2 b/2 -jkor,
E—l 1 By eyt 9—;————3 dx} dy' = A cos (kgx;)
Tw -a/2 -b/2 12
X, +&/
+ B sin ko Xy + S51(1+r;) sin n(—} 2)
o ol X +a/2 +b/
+ I LSy Am sin mn(_L__—_) cos nn(z———z)
m=1 n=0 n a b
At Aperture #2
. a/2 b/2 -3k r,,
o3 T T, kvt @250 axy gy
21w ~3/2 -b/2 1 Ty
_s a/2 b/2 ~Jjker,,
T §2 ; Ty T . dXh Ay’ = C cos ko))
-a -b/2
(19)
X +a/2
, . 2
+D s1 k + S 1+rT _—
n kgx, 2 2) sin 7 ( 3 )
— . x,+%/ 2 y+P/2
+ z 3 H —
mil nEo So bmn sin mn ( 2 ) cos nmn{ 5 )

where ry, = v/ (Xl—xi)2 + (Y‘Y')Z r12 = v ?;;;b;xl)z + (y—y')z

/

r,.. =7 (xz—xé)2 + (y-y")? r,, = 7 (x,+D-xj)?% + (y-y")?

17



These equations can be uncoupled by considering separate
symmetric and anti-symmetric excitations S, = +S; = +1. When
this is done there is complete symmetry or assymmetry about
the line Xy = d/z. Setting X, = +x; = x, C= A, D = ¥B and
Bun = *Apn for m odd and By, = iAmn' for m even, one can see
that the resulting equations have the solution EYZ(-xz,y) =
+ EYl(xl,y) and that the two equations reduce to a single
equation in these two limits. It is then a simple matter to
reconstruct the case of arbitrary excitation by taking the
appropriate combinations of these two cases. Later the

solution to the case of parasitic antenna #2 (S, = 0) will be

considered.
Defining
(20) S

Inn (xX,y) = Imn(x,y) I a(-x + d,y)
and using the previous definition (15) of this integral, one
obtains the following equations for the symmetric and anti-

symmetric problems.

S S
a
A
[—ylo A(x,y) + sin n(x+a/2)] r - A cos kgx - D sin kgx
(21)
S b S
® ® ) +a/ +°/ A
- 32- 5 g ) [Ymn Imn A(x,y) + sin mn (x a 2)COS nn (y—-b—g) ]Amn
m=1, n=0,
S
A . x+2/2
= YIO IIO (x,y) + sin ﬂ(_'a_)

18



As before, this equation was written at a finite number
of points within the aperture and a truncated series of modes
was used to describe the field. There are now two constants
per equation, and these are determined as before by requiring
the integral equation to be valid at two extra points in the
aperture.

In order to construct the solution for the case when
antenna #1 is excited and antenna #2 is kept parasitic and
terminated in a matched load, it is simply necessary to super-
impose the symmetric and antisymmetric solutions and to
divide by two in order to normalize to the source amplitudes.
Following the usual procedures for such problems and using
the subscript p to denote this case, one obtains the

coefficients below:

(22) s, =s,, = 5(r° + ®)
s A
(23) s,, =8, = X%(r -7T)
s A
(24)  Agy = H(agn + A D)
P
(25) By, = %(Bpo - B )
P

V. THEORETICAL AND EXPERIMENTAL RESULTS
The convergence of the matrix solution to equation (21)
has been studied in detail in order to determine its accuracy.

Furthermore, since this entire mathematical development rests

19



upon the applicability of the scalar approximation (9), an
experimental program was undertaken to provide results to
compare with the theory. These two subjects are discussed in
detail below.

The convergence properties of the solution for single
and coupled waveguides are basically different and so they
are discussed separately. Table I shows the variation in
input reflection coefficient for the single radiating wave-
guide as various sets of modes are chosen to represent the
field distribution. All accuracies are relative to the
highest order solution (Case 6). The single mode approxima-
tion yields an imaginary part which is in error by about
twenty percent and a real part (much smaller than the
imaginary part) which has the wrong sign. A solution with
four modes (Case 3) but including the 12 and 14 modes to aid
in approximating the E-plane distribution is among the more
accurate solutions shown. This high accuracy 1is coincidental
and was not generally repeated, but this solution was always
within about ten percent of the highest order solution for
all cases examined, and so was later used to form the basis
of the coupled waveguide study (after the addition of another
mode having anti-symmetrical x-dependence). Another four
mode solution (Case 2) with one less mode to describe the L-
plane distribution was less accurate than the results of

Case 3. Nine modes (Case 4) serve to determine the imaginary

20



12

CASE

TABLE I

A. SINGLE WAVEGUIDE REFLECTION COEFFICIENT

10
lo, 12, 3
10, 12, 1

10,
52,

30, 5
14, 3

10,
52,

30, 5
72, 1

1o,
14,

30, 5
34, 5

MODES

0, 32
4, 30

0, 12,
4, 54

0, 70,
4, 34,

4, le,

32,
12,
54,

32,
36,

32,
74

52,
56

a/

A

= 1.0; b/2

= 0.3

REFLECTION COEFFICIENT

T10

T10

B. MODE AMPLITUDES FOR CASE

0.07729 - j0.27786

-0.05521
-0.00638
-0.05538
-0.00762

-0.00165

+

+

-+

§0.00195
§0.00151
j0.08904
§0.00171

10.00022

-0.3928 -
0.10230 -
0.07742 -
0.08309 -

0.08319 -

0.07729 -

~0.01965
-0.00302
~-0.00076
-0.00736
-0.00107

-0.00021

j0.32680
§0.24786
30.26969

50.27193

30.27085

30.27786

- §0.03589
+ §0.00051
- j0.00034
- 30.01418
+ §0.00030

+ 30.00021



part of the reflection coefficient to within about two percent
of the highest order solution considered and the real part to
about eight percent. A comparison of this solution (Case 5)
with Case 6 illustrates that the distribution in the H-plane
(x-direction) is fairly well approximated by a few terms
because the three extra modes introduced to more precisely
approximate the x dependence barely change the value of the
reflection coefficient. Table IB lists the mode amplitudes
for another twelve mode solution (Case 6) which was chosen to
provide the highest order approximation to the E-plane distri-
bution, and hence the most accurate solution for the
reflection coefficient. Inspection of these mode amplitudes
is a convenient measure of convergence because the integral
equation (21) is solved at a number of discrete points within
the aperture and therefore one can expect an error in the
reflection coefficient which is approximately the size of the
modes truncated. Table IB therefore shows why it is especially
necessary to include the modes which approximate the E-plane
field variation (12,14 etc.).

Figure 2 shows the aperture field variation provided by
this twelve mode solution. The approximation of the singular-
ity at y = +b/2 is evident in this distribution, as is the
fact that the H-plane distribution is fairly accurately

represented by a single mode.
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FIGURE 2 APERTURE ELECTRIC FIELD
DISTRIBUTION FOR RADIATING WAVEGUIDE
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Figure 3 displays a set of curves of input admittance of
a radiating rectangular waveguide. These curves are presented

(4)

in the form of the well known results of Lewin and a few

points are shown to illustrate the correlation with Lewin's
data. This correlation is very good except for deviations
of about ten percent in the conductance for thick slots, and
of about thirteen percent in the susceptance for very thin
slots. There is no experimental evidence to compare with
these two theoretical results, but since they are both derived
using the same scalar approximation (9) and since the present
analysis is a convergent solution, it is claimed that the
data of Figure 3 is a more accurate solution to the integral
equation. Whether or not these curves show closer agreement
with experiment will determine the usefulness of the scalar
approximation itself.

Regarding the usefulness of this scalar approximation for
describing waveguide admittance, Figure 4 compares the
experimental data of Venema(26'27) with the results of this
theory and the work of Lewin. These results indicate that
the solution in terms of this single set of hertzian potentials
is indeed a valid approximation for describing waveguide
admittance. Venema's data does appear to follow the results
of this theory more closely than Lewin's theoretical results,
but for the size slots chosen there is so little difference

between the two that no conclusion can be drawn except that

they both agree very closely with experiment.
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It is appropriate to point out that Lewin's stationary
solution, which uses a single mode, is considerably more
accurate than the single mode approximation used with this non-
stationary solution. The advantage of the method presented in
this note is that enough higher order modes can be conveniently

included to bring about a convergent solution.
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The solution of equation 21 for the case of two collinear
coupled waveguides involves some of the same convergence
properties as the single waveguide, but it also offers the
possibility of relaxing the convergence requirements for the
coupled parameters. The self admittance terms necessarily
behave in a very similar manner to the single waveguide, and
so all of the comments about truncation apply here as well.

The presence of the second slot in the ground plane (with the
second waveguide terminated in a matched load) causes a small
change in the input reflection coefficient of the driven
antenna. Figure 5 shows that the imaginary part of the reflec-
tion coefficient undergoes a change of about eight percent
with spacing variations, while the real part being much
smaller, changes by about fifty percent. The effect of this
coupling is no longer visible when the center to center dis-
tance exceeds about 1.2)X. When the spacing d/x exceeds five,
the subtraction indicated in equation (23) begins to intro-
duce numerical inaccuracies, but for the range of spacings
used throughout this report no additional approximation is
introduced by this symmetric-antisymmetric formulation.

A more familiar property of closely spaced radiating slots
is the direct coupling between the radiating signal and the
parasitic antenna. Table IIA shows that for the case considered
this parameter is relatively insensitive to the approximation

used 1n computing the aperture field.

27



0.20L N\ Im(Sn) o
= % = 2.0
= 015 ) = 0.6
2
Q
2 0.0
&
[
.0
S 0.05}-
o \___ Re(S1) -
1 1 IR
0.5 1.0 1.5 3.0
d/)\

FIGURE 5 REFLECTION COEFFICIENT OF DRIVEN
ANTENNA WITH PARASITIC ANTENNA MATCHED

28



CASE

1

2

TABLE II

A. COUPLING COEFFICIENT FOR COLLINEAR COUPLED WAVEGUIDES

= 2,286 cm

1.016 cm

MODES
10
10, 20, 30, 40,
10, 20, 30, 12,

lo0, 20, 30, 12,
14, 24, 34

12,
14

22,

14

32,

d = 2.921

frequency = 10.0 GHz

COUPLING COEFFICIENT S;,

S12 = 0.01669 + j0.00754

Si2 0.01819% + j0.01124

Sy, = 0.01786 + 30.01120

Syp = 0.01874 + j0.01047

B. MODE AMPLITUDES FOR CASE 4

= 0.05595 - j0.22203
= 0.00233 - j0.00210
= -0.02432 - j0.00741
= -0.05513 - j0.09512
= 0.00030 - §0.00033
= -0.00652 - j0.00053
= -0.01430 - j0.02800
= 0.00004 - 30.00010

= -0.00184 - j0.00009

S12 = 0.01874 + j0.01047
Bpg = -0.00294 - j0.03949
Bio = -0.00344 + j0.00266
Biz = 0.00211 ~ j0.00130
Bgz = -0.00085 -3j0.00569
B3y = -0.00092 + j0.00095
B§4 = 0.00058 - j0.00041
324 = -0.00025 +3j0.00161
324 = -0.00026 - j0.00027
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Table IIB shows the coupling coefficients for Case 4 with one
antenna driven and the other terminated in a matched load.
This data is revealing because it demonstrates that the

error involved in estimating S;; due to approximating the
aperture field singularity is likely to be significantly
larger than that involved in evaluating S,y for the same field
approximation. (Notice that the rétio of |Aj,] to |S33]| is
much larger than the ratio of |Bj,| to [Sj3]). This is
because the entire field exhibits this singularity, not merely
the reflected wave. Table IIB does show that the ratio
[Aj2{/|1+S11| is indeed about the same (0.1) as the ratio
|B121/]8121=(0.115).

These comments relate to the convergence of the chosen
approximate solution, but reveal nothing about the correspon-
dence of this analysis to the physical problem of collinear
slot coupling. It remains to show that the solution based
upon this approximate scalar model has relevence to the
problem studied.

An experiment has been conducted to test the validity of
the analysis for the collinearly coupled waveguide case.
Since the coupled signal was so small compared to the trans-
mitted signal, none of the conventional techniques for
measuring the phase of the coupled signal sufficed. To solve
this problem a new technique(zs) was devised which made it
possible to measure the phase to within +4©, even when the

coupled signal amplitude was -40 db relative to the transmitted
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signal. Figure 6 shows that this data compares very closely
with two theoretical solutions. The five and nine mode
theoretical solutions yield nearly the same coupled power,
but the difference in phase between these two approximations
can be as much as 15°9. This discrepancy is caused by the
omission of the higher order modes (22) and (24) in the

five mode solution. These modes possess odd symmetry about
the center of each waveguide and become very large at the
high frequencies where the solutions differ substantially.
The amplitude of B22p is about one third |S;,| at 10.0 GHz,
but it is about equal to [S;,| at 12.5 GHz.

Since the five mode solution does yield reasonably
accurate results and requires much less computation time, it
has been used in Figures 7a and 7b. These figures show the
amplitude and phase of the coupled signal for waveguides with
the dimensional ratios /b = 2.0 and 2.5 and for waveguide
widths up to /) = 0.99. The sets of curves with different
a/p are essentially parallel and sufficiently close together
to allow interpolation between the. Therefore, the curves
provided cover the range of almost all commercially available
wave guides.

Several important points are noted when these results
are considered in detail. The first relates to the work of

Lyon et.al.(ls)

in which it is observed that the coupling
amplitude |S;,| varies very nearly like l/d2 as the distance

d between slots is varied, and that this is approximately
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true even for very close spacing. Unfortunately, this is

only true in a qualitative way and the coupling does not
follow this law closely enough to allow its use quantitatively.
The complex coupling coefficients S;, does vary like
[exp(-jkod)]/d2 for the collinear case when the spacing is
sufficiently large, but Figure 7a shows a pronounced curvature
of the amplitude plot, especially for the larger slots
considered, and so it is obvious that the asymptotic behavior
of ISlzl does not begin to dominate unitl d/x exceeds 2.0 or
2.5. The convergence of the curves in Figure 7b shows that
the phase relationship is even less predictable and, though
this is not shown in the Figure, the asymptotic type of
variation in phase does not dominate until d/x exceeds about
5. This same phase nonlinearity is exhibited by the more
accurate data of Figure 6b, and so is clearly not caused by

the approximations involved in the computations for 7b.

VI. CONCLUSION AND COMMENTS ABOUT ARRAY THEORY
This study has shown that a set of fields derivable from

a single component of the hertzian magnetic potential
function can provide an extremely accurate solution to the
boundary value problem for a single waveguide radiating
through a perfectly conducting ground plane or for two
collinear radiating slots. The solution is rigorous for
idealized slots of zero thickness, and is a good approxima-
tion even when the slot is the size of a standard commercial

waveguide.
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This basic formulation could be used to describe the
mutual coupling between elements of an array, especially if
the waveguide height is less than one half wavelength, but
it can yield no information about the cross-coupled fields
that are excited at the array face.

The convergence properties of the solution have been
emphasized, and no attempt has been made to simplify the
numerical solution. An extensive experimental program was
undertaken in an attempt to measure the amplitude and phase
of the coupling as accurately as possible so that these could
be compared with the theoretical results. The agreement
between theory and experiment is excellent.

In addition to the detailed study of the problem at
hand, this work has led to certain qualitative conclusions
which have application to the development of an approximate
array theory for radiating waveguides. These conclusions
concern the errors which arise using various sorts of
approximations, which errors seem to fall naturally into two
categories: those which have to do with specific approxima-
tions to the aperture fields or the type of solution used
(ie. a variational theory or the truncated series approxima-
tion used here), and those fixed by the physical process of
coupling independent of the mechanics of solution. Errors of
the first type have been discussed in sufficient detail in

Section V, and some hints have also been given in that section
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relative to simplifying the theory. Concerning the physical

processes which must be accounted for by any theory, the

following conclusions now appear evident.

38

a) If the waveguide dimensions are such that a cross-
polarized TE|q mode (ie. one with its electric field in
the x-direction) can propagate, then the array theory
must allow for coupling between the two senses of

polarization.

b) This analysis has shown that coupling between collinear
slots is so small that the reflection coefficient at

one slot, with the waveguide of the second slot termina-
ted in a matched load, is very nearly the same as for

the isolated slot. This is not true for closely spaced
parallel slots because they couple much more strongly,

and so it will be necessary in general to account for

the array geometry in the development of the slot self

admittance.

c) The asymptotic approximation S12 = c[exp(—jkod)]/d2
provides convenient insight into the mechanism of

coupling, but it does not provide accurate amplitude and



phase information if the spacing between antennas is
less than five wavelengths. An accurate waveguide

array theory must therefore be a near field theory.
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APPENDIX

Expansion of the Waveguide Fields in terms of two
Magnetic Hertzian Potentials.

The complete field in a rectangular waveguide can be
expanded rigorously in terms of one component of both the
electric and magnetic hertzian potentials when these compo-
nents are both taken along the same axis. The most common
choice of axis is the direction of propagation (;) but it is
sometimes convenient to choose these vectors along either
the x or the § axis. When the fields are to be matched at a
plane boundary at the end of a waveguide, the fields can be
expanded in terms of two magnetic hertzian potentials. To
show this, it is convenient to choose the magnetic and
electric hertzian potentials i“mx and i"ex as the basis for
a rigorous expansion of the waveguide fields for the general
waveguide discontinuity problem. The proof will then proceed
by showing that a different set of two magnetic hertzian
potential functions i"mx and §nmy can be made to satisfy the
same boundary conditions as the original set.

An exp[+jwt] time dependence has been suppressed. The
general electromagnetic field is written below as derived

from magnetic and electric hertzian potentials.

(Al) E(r) = -jo¥ x T+ V(V = Tg) + k2 7g
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k?.

oy p— — . o —
(A2) B(r) = v(v - nm) + kgnm + )—;— v x Te

As pointed out earlier, the general field inside of a

rectangular waveguide can be written in terms of XU and

~

X‘n‘ex as:
(A3)  E(r) = -juv x (Rmpy) + V(7 + Xmgy) + X k3mgy
_ k2 .
(A4)  B(r) = V(V « xm ) + x k3w + j7§ Vox (xmgy)

The alternate set of magnetic potentials is given below.
The prime symbol is used to designate that the magnetic
potential "éx in this expansion need not be the same as

mx

in the expansion of equations (A3) and (A4).

(a5)  E(r) = -juv x (xn! ) -3u¥-(¥rpy)

(76) B(r)

. x .y 2
V(v x"éx) + V(V - ymqy) + X kgmp. + ¥ K

The electric fields tangential to the aperture plane are
both equated to the tangential aperture field, and therefore
are equated to each other. In component form, the two

resulting equations are:

] 2
am am 3w
. mx mx, _ ex
and 3
w
32nex 2 _ . _ my
(A8) 7 + ko‘n’ex = +Jw 3z
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If the field can be expanded in terms of two magnetic
potentials, then the above relations which guarantee the
equality of the tangential components of E in the aperture,
should also guarantee that the tangential components of B
as expanded using either set of functions is also equal at
the aperture.

The magnetic fields tangential to the aperture plane are
equated to the tangential aperture field and hence to each

other. The resulting equations are:

2 3 22
(A9) Cha 22 '+ 52 ex = “my + k2
axay | mx axay mx W Tz < y o"my
2
32 2 T
Alo — + k2 -ty = 2
( ) (axz &) ("owe = "mx! -

If these equalities can be proved to be identically true
using (A7) and (A8) then the desired proof will be accomplished.

This can be shown to be the case for equation (Al0) by taking
32
IXdy
(Al0) from this. The resulting equation can be written in the

of equation (A8) and by subtracting jwf% of equation

form below.

2
9 Tox

X3y

(All) (—Ai + k32) [‘m‘i (n - Tme) ] = 0
axz o ] 3z mx mx *

This equation is identically satisfied using (A7).
Similarly, equation (A9) can be shown to be identically satis-
fied by starting with equation (A8) and using the fact that
Tex Satisfies the scalar helmholtz equation to re-write (A8)

in the form shown below.
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32 32 . a'mx
— + — = -
(al12) (322 ayz) Tax Jw =z
. j, 32 . . . .
Taking +%(3§I + ké) of this equation and subtracting it
from f% of equation (A9), simplifying and again using the
helmholtz equation one obtains the resulting equation:

2 aw om ! 22 aZuex
(313) 22— [jo(—2X - B .
9X3y 32z 3z 9X3y 9X3y

This equality is also identically satisfied by equation
(A7) and therefore the two expansions are equivalent for the

problem considered.
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